

Theoretical Developments for Soil Behaviour under Cyclic Loading

Luc Simonin (luc.simonin@eng.ox.ac.uk)

Supervisor: Prof Byron Byrne

Introduction

82% of offshore wind turbines (OWT) **foundations** are **monopiles in Europe.** [1]

Larger OWT and larger pile diameter

Moving from ULS to SLS & FLS design

Foundation response to cyclic loading:
Accumulated rotation (ratcheting), evolution
of secant stiffness and damping

Project Structure

Building on the success of PISA projects [2]:
Ørsted and the University of Oxford collaborate to understand the impact of cyclic loading on OWT monopiles.

Observations on Cyclic Loading

- Hysteretic response conforming to Masing rule. [3]
- Ratcheting in the direction of load bias [4], at a decreasing rate with cycles [3].
- The rate and the amplitude of loading have an impact on the soil response [5].
- Loading history: effect of a storm can be limited after SLS loading [3], stiffness is not recovered after high amplitude loads [5].
- Partial two-way loading and multi-directional loading can cause greater accumulated deformations [4].

Top right: hysteresis conforming to Masing rule & Bottom right: Illustration of rate effects

Cyclic Loading in Standards

Modified *p-y* curves are used for the design of monopiles under cyclic loading:

- Soil strength is assumed to be reduced.
- Lack or no consideration of: number of cycles, loading history, accumulated rotation, change in stiffness and damping.

Future Work

- Development of constitutive models in effective stress readily implementable in 3D FEA software.
- Potential material: dense sand. Cyclic test data are available.
- Constitutive modelling in hyperplasticity framework.

Research Plan - Hyperplasticity

- Empirical relations are not sufficient to capture cyclic loading. [4]
- Constitutive models needed to capture the behaviour through cycles.

	Monotonic	Cycling
0-D: Macromodel	Routine	Routine
1-D: p-y type	Routine	Available
3-D: Continuum	Available	Scope of the research

State of development in the hyperplasticity framework

 Hyperplasticity derives elastoplastic behaviour from the laws of thermodynamics. It is modular, physically sound, clear and concise.

References:

- [1] Wind Europe . 2019. Offshore Wind in Europe Key trends and statistics 2018
- [2] Byrne et al. 2017. PISA: New Design Methods for Offshore Wind Turbine Monopiles.
- [3] Abadie, C. N. 2015. "Cyclic Lateral Loading of Monopile Foundations in Cohesionless Soils." DPhil thesis. University of Oxford.
- [4] Richards et al. 2019. Monopile rotation under complex cyclic lateral loading in sand. Submitted
- [5] Beuckelaers, W.J.A.P. 2017. "Numerical Modelling of Laterally Loaded Piles for Offshore Wind Turbines" DPhil thesis. University of Oxford.

Acknowledgement

The author acknowledges Ørsted for providing the DPhil studentship at the University of Oxford through the Centre for Doctoral Training in Renewable Energy Marine Structures (REMS CDT).