

Development of Multi-disciplinary Prognostic and Diagnostic Models for the O&M of Offshore Bottom-fixed Wind Farms

Debora Cevasco (debora.cevasco@strath.ac.uk)

Supervisors: Dr Maurizio Collu, Prof Athanasios Kolios

Introduction and aim

O&M for offshore wind farms represents about 39% of their total life-time cost. Conventional maintenance schemes could lead to additional and unforeseen costs.

This research is aimed to investigate models for the prognosis and the diagnosis of offshore wind turbine failures.

Methodology

- 1) Identification of critical components for offshore bottom-fixed wind turbines [1,2]
- 2) Development/adaption of multiphysics models of dynamics for the wind turbines [3], and the wind farm, to support the synthetic-data driven condition-based maintenance. 3) Data-driven techniques [4,5] and models for the selection of damage indicators, and detection StrathFarm running 6 StrathTurb models for the NREL 5 MW reference wind turbine (D = 126 m). Layout from WP1.1, with spacing as for the Alpha Ventus wind farm Wind-only simulations **′.3D** 8000 row1 60 row2 7000 **Turbulent wind** 6000 14 m/s (TI 10%) 5000 Mapping of the power output 4000 position [x/D] 3000 7.3 14.6 *row1* 4.91 4.85 4.86 2000 Mean [MW] 1000 *row2* 4.86 4.85 4.90 102 286 251 row1 Std [kW] -1000 *row2* | 252 326 171 1000 2000 3000 -1000 0

Progresses and discussion

- **1.** Integration of the model for electro-dynamics (from WP1.1) into StrathTurb
- 2. Comparison against the AHSE model of FAST (v.8) integrated with the electro-dynamics
- 3. Preliminary results for the wind farm model (StrathFarm)

Tracking performance/load of/on turbines in array

- wind-only simulations (18 m/s, 11% TI)
- discrepancies due to different set values of torque at the rated condition, and use of: a drivetrain filter and a control loop on the tower top acceleration.

Conclusions and future work

- Adapted StrathTurb model represents well the fundamental dynamics of the systems.
- Next step will be the consistent adaption to direct drive of StrathTurb/Farm for HOME 5 MW wind turbine and the investigation of damage identification techniques.

REFERENCES

[1] Cevasco et al., "O&M cost-based FMECA: identification and ranking of the most critical components for 2-4 mw geared offshore wind turbines" in IOP Conference Series: Journal of Physics, 2018, vol. 1102, pp. 1-12. Presented at the Global Wind Summit 2018 (Hamburg, Germany)

[2] Cevasco et al., "Offshore wind turbine reliability: a systematic review towards the identification of the most critical components" submitted to Renewable Energy.

[3] Carmona-Sanchez et al., "An analysis of the impact of an advanced aero-hydro-servo-elastic model of dynamics on the generatorconverter dynamics, for an offshore fixed 5 MW PMSG wind turbine". Presented at the 15th IET international conference on AC and DC Power Transmission, 2019, pp. 1–6 (Coventry, United Kingdom)

[4] Lin et al., "Progress on the development of a holistic coupled model of dynamics for offshore wind farms, phase I: aero-hydro-servoelastic model, with drive train model, for a single wind turbine" in Proceedings of the ASME 37th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2018), 2018, pp. 1–9 (Madrid, Spain).

[5] Lin et al., "Progress on the development of a holistic coupled model of dynamics for offshore wind farms, phase II: study on a datadriven based reduced-order model for a single wind turbine" to be presented at the ASME 38th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2019), (Glasgow, Scotland).

www.rems-cdt.ac.uk